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Abstract The stiffness, strength, and safety of a bicy-

cle wheel depend critically on the stiffness of its rim.

However, the complicated cross-sections of modern bi-

cycle rims make estimation of the stiffness by geomet-

ric methods very difficult. We have measured the radial

bending stiffness and lateral-torsional stiffness of bicy-

cle rims by experimental modal analysis using a smart-

phone microphone. Our acoustic method is fast, cheap,

and non-destructive, and estimates the radial bending

stiffness, EI11, to within 8% and the torsional stiffness,

GJ , to within 11% as compared with a direct mechan-

ical test. The acoustic method also provides a direct

measurement of the coupled lateral-torsional effective

stiffness, which is necessary for calculating many useful

properties of bicycle wheels such as stiffness, buckling

tension, and the influence of spoke tensioning. For a
complete bicycle wheel, the lateral stiffness can be de-

termined by a superposition of equivalent springs for

each mode in series, where each mode stiffness contains

a rim stiffness and spoke stiffness combined in parallel.

We give example calculations on two realistic bicycle

wheels using our experimentally derived rim properties

to show how stiff spokes can compensate for a flexible

rim, while a very stiff rim doesn’t necessarily result in

a stiff wheel.

Keywords experimental modal analysis · acoustics ·
bicycle wheel · structural characterization · smartphone

applications

M. Ford · P. Peng · O. Balogun
Dept. of Mechanical Engineering, Northwestern University
2145 Sheridan Road, Evanston, IL 60208

M. Ford
Tel: +1 847-491-3054
E-mail: mford@u.northwestern.edu

1 Introduction

The ubiquity, connectivity, and computational power of

smartphones have inspired applications in non-destructive

evaluation (NDE) and structural health monitoring (SHM).

The built-in accelerometer has been used to identify

natural modes of buildings and bridges [1], measure

inclination angles [2], and detect and quantify seismic

events [3]. Smartphone accelerometers generally have a

maximum frequency of 50-100 Hz, and thus are limited

to measuring seismic activity or natural modes of large

structures.

The microphone picks up where the accelerometer

leaves off: the one used in this study has a relatively

flat frequency response above 100 Hz. Although the

microphone has received limited attention for NDE ap-
plications, smartphone microphones have been used for

close-range sonar measurements [2], detecting roller bear-

ing failures [4], and measuring bicycle spoke tension

[5]. Other potential applications in the audible range

include concrete bridge deck inspections, which often

rely on the operator’s trained ear to detect anomalies,

and rapid inspection of automotive assemblies during

manufacturing. In this paper we present a novel appli-

cation using a smartphone microphone for quantitative,

model-based NDE of bicycle rims.

The stiffness [6], truing response [7], and maximum

spoke tension [8] of a bicycle wheel depend partly on

the stiffness of the rim in bending and torsion. Rim

cross-sections typically have complicated shapes with

multiple open and closed regions and the exact shape

and wall thickness cannot be easily determined without

a destructive test. Furthermore, the spoke holes reduce

the effective bending stiffness over relevant length scales

in a complex manner [9]. Therefore, it is desirable to
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obtain the rim section properties experimentally and

with minimal assumptions or computation.

Pippard and Francis [6,10] undertook the first quan-

titative experimental investigations of the stiffness of

spoked wheels and compared their results with an ana-

lytical solution. For the special case of radial loads, they

determined the in-plane bending stiffness of bare rims

by diametral extension. The rims that they tested were

cut from a steel plate and all had rectangular cross-

sections of varying aspect ratio and did not resemble

the complicated cross-sections of modern rims. Due to

the difficulty of determining the out-of-plane bending

stiffness and torsional stiffness of a circular beam, their

investigation of lateral deformations was limited to the-

ory alone. Burgoyne and Dilmaghanian [11] performed

experiments on bicycle wheels and compared their re-

sults with Pippard’s theory. They calculated the radial

bending stiffness of the rim from geometric analysis of

its cross-section, but their study was limited to radial

loads. Gavin [9] noted that the out-of-plane bending

stiffness and torsional stiffness are coupled in curved

beams and require at least two independent measure-

ments to determine. He performed out-of-plane deflec-

tion tests while clamping the rim at two points with

various arc lengths. This method requires rigid clamps

and neglects warping of the cross-section.

Experimental Modal Analysis (EMA) [12] is a tech-

nique for inspecting structures to predict the dynamic

response, assess the quality of a manufactured product,

or monitor the health of an existing structure [13]. In

one variant of EMA, the structure is impulsively excited

and then monitored using one or more accelerometers

or contact transducers. With enough transducers, both

the natural frequencies and mode shapes may be esti-

mated. If spatial information is not required and the

modes of interest have sufficiently high acoustic cou-

pling in air, a microphone may be used to obtain a

spectrum, allowing for non-contact measurement.

We have developed a method for measuring the stiff-

ness of bicycle rims for both in-plane and out-of-plane

loads using quantitative model-based EMA. Our method

is fast, non-destructive, and can be performed with only

simple household tools including a weight scale, a piece

of string, and a smartphone. Together with knowledge

of the spoke geometry and material properties, our test

can be used to determine the bicycle wheel’s radial stiff-

ness, lateral stiffness, and maximum safe tension before

buckling. For the purposes of validating the technique

we also compare the calculated stiffness from the acous-

tic test with quasistatic load-displacement tests in both

the radial and lateral directions.

2 Resonant frequencies of a bicycle rim

A bicycle rim without spokes will resonate at its natu-

ral frequencies when struck. These resonant modes are

within the audible range and can be easily recorded

with a standard smartphone microphone. The modes

are classified into radial bending modes (rim moves en-

tirely within its plane) and lateral-torsional modes (rim

moves out of its plane). Although both types will be

present in an experimental spectrum, they can be pref-

erentially excited by striking the rim at different angles,

much like how a percussionist can control the timbre of

a gong or drum.

The natural frequencies of the radial bending modes

depend on the rim properties as follows [14]:

fradn =
n(n2 − 1)√
n2 + 1

√
EI11

2πR3M
(1)

where fradn is the nth harmonic frequency, E is the

Young’s modulus, I11 is the second moment of area for

in-plane bending, R is the radius of the rim at the cen-

troid, and M is the total mass of the rim. The first mode

n = 1 corresponds to a rigid-body motion with zero

frequency. The fundamental vibration mode is n = 2.

Having measured M and R and identified several modes

from the frequency spectrum, the in-plane bending stiff-

ness EI11 can be determined by solving Eqn. 1 and

averaging the result from several different modes.

If warping is neglected, the frequencies of the lateral-

torsional modes depend on the rim properties as follows

[14]:

f latn =
n(n2 − 1)√
µn2 + 1

√
GJ

2πR3M
(2)

where µ = GJ/EI22, G is the shear modulus, J

is the torsion constant, and I22 is the second moment

of area for out-of-plane bending. Unlike Eqn. 1, Eqn. 2

depends on two independent stiffness parameters µ and

GJ which must be determined simultaneously.

3 Experimental procedure

3.1 Acoustic Test

The impulse responses of seven aluminum rims of un-

known properties were obtained by the following pro-

cedure: the rim was suspended by a string from the

valve stem hole and struck with a screwdriver handle

wrapped in rubber. The rim was struck first on the in-

side circumference and then on the sidewall at a point

between two spoke holes approximately 10◦ from the
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Fig. 1 (a)-(b) Experimental setup for radial and lateral strike test. (c)-(d) Time-domain signals for radial and lateral strike
test. (e) Fourier spectrum for radial strike (top), lateral strike (middle), and background noise (bottom).

Table 1 Properties of the rims in this study.

Rim Typea R [mm] M [g]

Alex ALX295 DDW 305 480
DT Swiss R460 DDW 304 459
Sun Ringle CR18 20” DW 217 380
Sun Ringle CR18 700c DW 304 540
Alex Y2000 26” SW 271 460
Alex Y2000 700c SW 302 551
Alex X404 27” SW 307 594
aCross-section type: DDW=deep double-wall, DW=double-
wall, SW=single-wall.

bottom of the wheel to excite as many modes as possi-

ble. Audio was recorded with the “Recorder+” app on

an iPhone SE using the built-in microphone at a sam-

pling rate of 44.1 kHz. The frequency spectrum was es-

timated by averaging eight spectra calculated using the

Fast Fourier Transform with a bandwidth of 1.35 Hz. A

noise spectrum was also obtained by recording several

seconds of silence in the same room. The frequency re-

sponse of the built-in microphone was measured in an

anechoic chamber (see Online Resource 1).

The peaks with a signal-to-noise ratio greater than

10 were identified and classified as radial or lateral modes

depending on their relative magnitude in the two spec-

tra. The frequency of each peak was determined by fit-

ting a Lorentzian function in the neighborhood of the

maximum value. The two peaks at 27 Hz and 60 Hz

were present in the noise spectrum and therefore re-

jected.

3.2 Diametral compression

The rims were then loaded in diametral compression un-

der displacement control in an Instron MTS. The valve

hole was placed at 45◦ from the load point where the

bending moment is minimized to reduce its effect on the

measurement. Castigliano’s method gives the deflection

of a ring subjected to radial point loads [15]:

δ =
PR3

4EI11

(
π − 8

π

)
(3)

3.3 Four-point bending test

The lateral stiffness of each bicycle rim was also mea-

sured using a four-point bending test. The rim was sup-

ported at 3- and 9-o’clock by cylindrical rods and con-

strained against a rigid bracket on the top surface of the

rim at 12-o’clock. The rim was then loaded by hanging

a weight from the spoke hole (or valve hole) at 6-o’clock.
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Fig. 2 Selected radial load-displacement curves under di-
ametral compression. Black triangles = Alex ALX295, red
circles = Alex Y2000 26”, blue squares = Sun CR18 700c.

Fig. 3 Four-point bending test. A small mirror resting on
the rim at 9-oclock reflects the laser spot onto a grid (to the
right, not shown). The un-balanced configuration effectively
doubles the lateral displacement at the load point and in-
creases sensitivity.

The vertical deflection at 6-o’clock was measured using

a dial indicator and the rotation of the cross-section at

9-o’clock was measured by an optical lever with a diode

laser.

If warping is neglected and only the strain energy

due to lateral bending and uniform torsion are consid-

ered, Castigliano’s method yields the displacement ul
at the load point and the rotation of the cross-section

φs at the left support (see Online Resource 1):

ul = −
(
PR3

2GJ

)
[(2(3− π) + µ(2− π)]

φs = −
(
PR3

8GJ

)
(1 + µ)(2− π)

(4)

By simultaneously measuring the deflection and ro-

tation, GJ and µ can be determined from a single test.

4 Results and discussion

4.1 Radial stiffness

After identifying the first several mode frequencies in

each spectrum,
√
EI11/2πR3M was estimated from the

fundamental (n = 2) mode. With knowledge of R and

M , the radial bending stiffness was determined from

Eqn. 1.

The results for the radial stiffness EI11 are shown in

Fig. 4. The error estimates are made on the assumption

that the mass and radius are both known to within 1%.

The uncertainty in the frequency is the greater of either

the estimated parameter variance from the Lorentzian

fit, or the frequency resolution of the spectral average.

Multiple modes may be averaged together to estimate

EI11, however the deviation from Eqn. 1 grows steadily

larger with higher mode number due to the fact that

shorter wavelengths interact with spoke holes and other

inhomogeneities.

4.2 Lateral-torsional stiffness

Lateral bending and torsion are coupled in out-of-plane

deformation modes of circular beams. Therefore, infor-

mation from multiple modes must be used to calculate

GJ and µ. Taking the ratio of two lateral-torsional fre-

quencies and solving for µ in Eqn. 2 gives

µ =
16− (f lat3 /f lat2 )2

9(f lat3 /f lat2 )2 − 64)
(5)

After calculating µ, GJ can be calculated from Eqn.

2 by setting n = 2:

GJ =

(
4µ+ 1

18

)
πR3M(f lat2 )2 (6)

Qualitatively, GJ scales the magnitude of the fre-

quencies and µ scales the spacing between modes. How-

ever, the situation is further complicated by the fact

that the cross-section of the rim does not remain per-

fectly planar. This additional warping deformation in-

troduces a length scale into the torsional stiffness which

depends on the rim radius and mode number. In this
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Fig. 4 Comparison of stiffness parameters calculated from the acoustic test vs. quasistatic load-displacement tests. For EI11
and GJ , refer to the left scale. For µ, refer to the right scale.

case the effective torsional response involves both GJ

and EIw, where Iw is the warping constant.

Results from the acoustic test and four-point bend-

ing test are shown Fig. 4. The value for µ is first cal-

culated using Eqn. 5 and then GJ is determined from

Eqn. 2 using the frequency of the n = 2 lateral-torsional

mode. We choose to fitGJ because it is generally smaller

than EI22 and therefore dominates the total flexibility.

The error estimates in Fig. 4 are made on the same

assumptions as for EI11. Due to the non-linearity of

Eqn. 5, error estimates for µ are calculated using the
Monte-Carlo method (see Online Resource 1). The lat-

eral bending stiffness and torsion stiffness are geometri-

cally coupled in lateral deformations. The total lateral-

torsional stiffness depends on EI22 and GJ as though

they were springs connected in series. The smaller stiff-

ness dominates the overall stiffness of series-connected

springs. Therefore GJ (generally smaller than EI22)

can be determined with much higher precision than

EI22 or µ. Even a small uncertainty on f lat3 /f lat2 re-

sults in a large estimated uncertainty on µ and EI22,

but not GJ .

4.3 Lateral-torsional mode stiffness

An acoustic test is sufficient to calculate GJ to within

11% of the results from the four-point bending test.

However, both models assume that warping is negligi-

ble. In fact, the acoustic test may be even more ac-

curate than the four-point bending test because it di-

rectly measures the mode stiffness of the rim, which

includes bending, pure torsion, and warping. In order

to account for warping, we derive the frequency equa-

tion for lateral-torsional vibrations with an additional

term for the warping resistance:

The differential equations of dynamic equilibrium,

including warping but neglecting the rotary inertia of

the rim cross-section, are

EI22
R4

(
d4u

dθ4
−Rd

2φ

dθ2

)
+
EIw
R6

(
d4u

dθ4
+R

d4φ

dθ4

)
−

GJ

R4

(
d2u

dθ2
+R

d2φ

dθ2

)
+

(
M

2πR

)
d2u

dt2
= 0 (7)

EI22
R3

(
d2u

dθ2
−Rφ

)
− EIw

R5

(
d4u

dθ4
+R

d4φ

dθ4

)
+

GJ

R3

(
d2u

dθ2
+R

d2φ

dθ2

)
= 0 (8)

We are seeking free vibrations of the form

u(θ, t) = une
inθeiωt

φ(θ, t) = φne
inθeiωt

(9)

Inserting Eqns. 9 into Eqns. 7 and 8 yields a lin-

ear system of the form A · [un, φn]T = 0. Non-trivial

solutions exist when the determinant of the matrix A

vanishes. Using this condition to solve for the angular

frequency ω yields the frequency equation:

ω2 =
2πn2(n2 − 1)2EI22

(
GJ + EIw

R2 n
2
)

MR3
(
EI22 +GJn2 + EIw

R2 n4
) (10)
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Exploiting the analogy with the simple harmonic

oscillator, for which ω2 = K/M , allows us to calculate

an effective rim stiffness of the nth mode:

Krim,n = 2

(
R3

πn2(n2 − 1)2
(
GJ + EIw

R2 n2
)

+
R3

π(n2 − 1)2EI22

)−1
(11)

Comparing Eqn. 11 with Eqns. 34 and 35 in refer-

ence [8], it’s clear that the effective stiffness is twice

the series combination of the rim bending stiffness and

torsion stiffness. Even if EI22 and GJ cannot be reli-

ably determined independently, the series combination

can be directly determined from the relation f latn =

(2π)−1
√
Krim,n/M .

10-1 100 101

Mω2 [N/mm]

10-1

100

101

K
ef
f,
n
 [

N
/m

m
]

Alex ALX295

DTS R460

CR18 20"

CR18 700c

X404 27"

Y2000 26"

Y2000 700c

Fig. 5 Comparison of mode stiffness from the acoustic test
(x-axis) and the mode stiffness calculated from Eqn. 11 and
the stiffness parameters determined from the four-point bend-
ing test. The error increases at higher mode numbers, likely
due to the length-scale dependence of the warping stiffness.

4.4 Stiffness of a complete wheel

The deformed shape of a wheel with spokes can be

written as a superposition of modes of the form u =

un cos (nθ). The lateral stiffness can be decomposed

into a series of equivalent springs for each mode [8].

The total lateral stiffness of the wheel is

1

Klat
=

3

2Kspokes
+

∞∑
n=2

1
1
2Krim,n +Kspokes

(12)

2α

(a) (b) (c)

Fig. 6 Example wheels for stiffness calculation: (a) Modern
racing bike wheel. (b) Vintage road bike wheel. (c) Side-view
showing spoke angle.

where

Kspokes =
nsks

2
sin2 α (13)

where ns is the number of spokes, ks is the axial

spring constant of a single spoke, and α is the angle

between the spoke and the plane of the wheel1 as shown

in Fig. 6. When calculating the wheel stiffness (with

spokes), the first two static modes, n = 0 and n = 1,

represent rigid-body motions of the rim, so only the

spoke stiffness is involved.

Table 2 Example wheel properties.

Wheel GJ EI22 Kspokes [N/mm] Klat [N/mm]

Modern 94.0 206 304 121
Vintage 16.8 158 461 147

Bicycle wheels are often marketed on their stiffness,

which is prized for its presumed benefits to performance

and durability. However, as modern rims have become

stiffer, wheel manufacturers have followed a trend to-

wards fewer spokes as a way to save weight, reduce drag,

and cut costs. How might a modern wheel compare with

a typical road wheel from the 1970’s?

As an example calculation, let us consider two hy-

pothetical front wheels with the same hub width (60

mm): (a) a modern racing bicycle wheel constructed

from the Alex ALX295 rim (a modern deep double-

wall rim) with 24 lightweight 1.7/2.0 mm spokes, and

(b) a vintage road bicycle wheel constructed from the

X404-27” rim (a shallow single-wall rim) with 36 2 mm

spokes. Using the mode stiffnesses measured from our

acoustic test together with Eqn. 12, wheel (a) has a the-

oretical lateral stiffness of 121 N/mm while wheel (b)

has a theoretical stiffness of 147 N/mm. The stiffer (and

heavier) spokes in wheel (b) make up for its relatively

1 Equation 13 is strictly valid for symmetric radially-spoked
wheels, but gives a good approximation for other cases. See
reference [8].
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flexible rim. Since the mode stiffnesses in Eqn. 12 add

in series, even a wheel with an infinitely stiff rim will

reach a maximum stiffness defined by its spoke system.

5 Conclusion

Acoustic EMA gives estimates of EI11 and GJ which

agree to within 8% and 11% respectively compared to

the results from static deflection tests for the seven

rims tested in this study. Together with the geometry

of the wheel and the axial stiffness of the spokes, these

properties can be used to make quantitative predictions

about wheel stiffness, maximum tension, and truing re-

sponse. Furthermore, the acoustic measurement can be

performed with a smartphone, tape measure, and scale.

The technique is suitable for automation and could be

packaged into a smartphone app for wheelbuilders or

bicycle designers.

The acoustic test also gives a direct measurement

of the lateral-torsional mode stiffnesses. When added

together using the series-springs rule, the rim mode

stiffnesses in parallel with the spoke stiffness gives the

wheel lateral stiffness [8]. In practice, only the first 3

rim modes need to be measured because the mode stiff-

ness increases dramatically with mode number.
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